Identification of novel isoform-selective inhibitors within class I histone deacetylases.
نویسندگان
چکیده
Histone deacetylases (HDACs) represent an expanding family of protein modifying-enzymes that play important roles in cell proliferation, chromosome remodeling, and gene transcription. We have previously shown that recombinant human HDAC8 can be expressed in bacteria and retain its catalytic activity. To further explore the catalytic activity of HDACs, we expressed two additional human class I HDACs, HDAC1 and HDAC3, in baculovirus. Recombinant HDAC1 and HDAC3 fusion proteins remained soluble and catalytically active and were purified to near homogeneity. Interestingly, trichostatin (TSA) was found to be a potent inhibitor for all three HDACs (IC50 value of approximately 0.1-0.3 microM), whereas another HDAC inhibitor MS-27-275 (N-(2-aminophenyl)-4-[N-(pyridin-3-methyloxycarbonyl)-aminomethyl]benzamide) preferentially inhibited HDAC1 (IC50 value of approximately 0.3 microM) versus HDAC3 (IC50 value of approximately 8 microM) and had no inhibitory activity toward HDAC8 (IC50 value >100 microM). MS-27-275 as well as TSA increased histone H4 acetylation, induced apoptosis in the human colon cancer cell line SW620, and activated the simian virus 40 early promoter. HDAC1 protein was more abundantly expressed in SW620 cells compared with that of HDAC3 and HDAC8. Using purified recombinant HDAC proteins, we identified several novel HDAC inhibitors that preferentially inhibit HDAC1 or HDAC8. These inhibitors displayed distinct properties in inducing histone acetylation and reporter gene expression. These results suggest selective HDAC inhibitors could be identified using recombinantly expressed HDACs and that HDAC1 may be a promising therapeutic target for designing HDAC inhibitors for proliferative diseases such as cancer.
منابع مشابه
Molecular dynamics simulation study explaining inhibitor selectivity in different class of histone deacetylases.
Histone deacetylases (HDACs) are key regulators of gene expression and thereby compelling targets in the treatment of various cancers. Class- and isoform-selective HDAC inhibitors targeting the particular isoform to treat cancers without affecting the normal expression of other isoforms are highly desirable. Molecular dynamics simulations were performed with the set of selective inhibitors and ...
متن کاملChemical Phylogenetics of Histone Deacetylases
The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of ...
متن کاملIsoform-Selective HDAC Inhibition in Autoimmune Disease
Histone deacetylases are a class of enzymes that play an important role in protein modification and cellular function. Ongoing research suggests that HDAC inhibitors may be efficacious in the treatment of a wide range of diseases from cancer to autoimmune disease. HDACi therapy has shown promising results both in vitro and in vivo for the treatment of autoimmune disease. To date, 18 isoforms of...
متن کاملClass I and Class II Histone Deacetylases Are Potential Therapeutic Targets for Treating Pancreatic Cancer
BACKGROUND Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of ...
متن کاملNovel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain
Histone deacetylases (HDAC's) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 307 2 شماره
صفحات -
تاریخ انتشار 2003